> Plus de cours & d'exercices de maths (mathématiques) sur le même thème : Arithmétique [Autres thèmes] | |
> Tests similaires : - Multiples de 2, 3, 5, 9 et 10 (CM2-6ème) - Nombres premiers - Critères de divisibilité par 2,3,4,5,8,9,11 - PPCM-Plus Petit Multiple Commun - Additions à trous en base douze - PGCD, les méthodes !! - PGCD : cours - Bases | |
> Double-cliquez sur n'importe quel terme pour obtenir une explication... |
Nombres premiers
I] Nombres premiers. Un nombre naturel est premier lorsqu'il n'est divisible que par 1 et lui-même. Rappel : a et b désignent deux entiers avec b≠0; on dit que a est divisible par b ou que b est un diviseur de a lorsque le quotient de a par b est un entier Exemple : 7 est premier car il n'a que deux diviseurs entiers naturels: 1 et lui-même (donc 7) 8 n'est pas premier car il a plus de deux diviseurs entiers naturels; 8 a quatre diviseurs: 1 _ 2 _ 4 et 8 ATTENTION: 1 n'est pas premier: il n'a qu'un seul diviseur entier naturel et 1 n'a pas deux diviseurs exactement II] Trouver les nombres premiers. Méthode: On cherche des diviseurs d'un nombre: en trouver trois suffit pour prouver qu'un nombre n'est pas premier. Exemple : On considère l'entier n=10. On établit la liste de ses diviseurs: 1 _ 2 _ 5 _ 10 donc on peut affirmer que 10 n'est pas premier. (rappel : donner trois diviseurs suffit pour dire qu'un nombre n'est pas premier) Méthode : Pour trouver tous les diviseurs d'un nombre N, on calcule sa racine carrée puis on divise le nombre N par tous les nombres entiers premiers compris entre 1 et sa racine carrée. Si le quotient est un nombre entier, alors le quotient et le diviseur sont tous deux des diviseurs de N. Exemple : La racine carrée de 16 est 4 donc on divise 16 par 1,2,3 et 4: 16 ÷ 1 = 16 Les diviseurs de 16 sont donc : 1 _ 2 _ 4 _ 8 _ 16 Méthode : On peut aussi utiliser le 'crible d'Ératosthène' pour trouver les nombres premiers compris entre 1 et 100 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |
On barre 1 qui n'est pas premier.
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |
On surligne 2 puis on barre tous ses multiples.
2 | 3 | 5 | 7 | 9 | |||||
11 | 13 | 15 | 17 | 19 | |||||
21 | 23 | 25 | 27 | 29 | |||||
31 | 33 | 35 | 37 | 39 | |||||
41 | 43 | 45 | 47 | 49 | |||||
51 | 53 | 55 | 57 | 59 | |||||
61 | 63 | 65 | 67 | 69 | |||||
71 | 73 | 75 | 77 | 79 | |||||
81 | 83 | 85 | 87 | 89 | |||||
91 | 93 | 95 | 97 | 99 |
On surligne 3 puis on barre tous ses multiples.
2 | 3 | 5 | 7 | ||||||
11 | 13 | 17 | 19 | ||||||
23 | 25 | 29 | |||||||
31 | 35 | 37 | |||||||
41 | 43 | 47 | 49 | ||||||
53 | 55 | 59 | |||||||
61 | 65 | 67 | |||||||
71 | 73 | 77 | 79 | ||||||
83 | 85 | 89 | |||||||
91 | 95 | 97 |
On surligne 3 puis on barre tous ses multiples; on recommence avec 5 puis 7 et enfin 11.
2 | 3 | 5 | 7 | ||||||
11 | 13 | 17 | 19 | ||||||
23 | 29 | ||||||||
31 | 37 | ||||||||
41 | 43 | 47 | |||||||
53 | 59 | ||||||||
61 | 67 | ||||||||
71 | 73 | 79 | |||||||
83 | 89 | ||||||||
97 |
Les nombres surlignés sont les nombres premiers inférieurs à 100 On peut par cette méthode obtenir tous les entiers premiers inférieurs à une valeur donnée III] Le test. Consigne : Répondez par oui ou par non sauf pour la question 12 |
Exercice de maths (mathématiques) "Nombres premiers" créé par anonyme avec le générateur de tests - créez votre propre test !
Voir les statistiques de réussite de ce test de maths (mathématiques)
Merci de vous connecter à votre compte pour sauvegarder votre résultat.
Fin de l'exercice de maths (mathématiques) "Nombres premiers"
Un exercice de maths gratuit pour apprendre les maths (mathématiques).
Tous les exercices | Plus de cours et d'exercices de maths (mathématiques) sur le même thème : Arithmétique