Cours de mathématiques gratuits>Créer un test
Connectez-vous !

Cliquez ici pour vous connecter
Nouveau compte
4 millions de comptes créés

100% gratuit !
[Avantages]


- Accueil
- Accès rapides
- Aide/Contact
- Livre d'or
- Plan du site
- Recommander
- Signaler un bug
- Faire un lien

Recommandés :
- Traducteurs gratuits
- Jeux gratuits
- Nos autres sites
   

Congruence

Cours gratuits > Forum > Forum maths || En bas

[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Congruence
Message de aletheia posté le 09-05-2021 à 16:40:47 (S | E | F)
Bonjour,
Je suis bloqué sur un exercice et j'aurai besoin d'aide
Voici le sujet:
Soient m et n deux nombres entiers naturels premiers entre eux, avec m ≥ 2 et n ≥ 2
Soient a et b deux nombres entiers relatifs. On considère le système (S): x ≡ a[m]
x ≡ b[n] où x désigne un nombre entier relatif
1) a) Montrer qu’il existe deux entiers relatifs u et v tels que mu + nv = 1
b) Montrer que x0 = anv + bmu est une solution particulière du système (S)
c) Montrer que tout entier x = x0 + kmn avec k ∈ ℤ est solution du système (S)
2) a) Montrer que (S) est équivalent au système: x ≡ x0[m]
x ≡ x0[n]
b) En déduire l’ensemble des solutions du système (S)

Merci d'avance pour votre aide


Réponse : Congruence de tiruxa, postée le 09-05-2021 à 21:44:12 (S | E)
Bonjour

Qu'as tu réussi à faire ?

1a) est un résultat de cours très connu puisque m et n sont premiers entre eux.

1b) il suffit de remplacer soit nv par 1-mu soit mu par 1-nv

1c découle assez vite du 1b)

Pour le 2) on verra ensuite.



Réponse : Congruence de aletheia, postée le 16-05-2021 à 20:28:28 (S | E)
Bonjour,
Voici ce que J’ai donc fait mais je ne suis pas vraiment sûr:
1)a) Si m et n sont premiers entre eux, alors il existe deux nombres entiers relatifs u et v tels que mu + nv = 1. En effet, si m et n sont premiers entre eux alors leur PGCD est 1 et d’après l’égalité de Bézout, il existe deux nombres entiers relatifs m et n tels que mu + nv = 1.

1)b)D’après le théorème du lemme chinois, on a (u,v) ∈ Z tel que : mu +nv =1

Posons x0 = anv + bmu

On a donc xo ≡ anv[m]

Or, anv = a – amu, donc x0 ≡ a[m].

On a aussi : xo ≡ bmu[m]

Or, bmu = b – bnv, donc x0 ≡ b[m].

On trouve donc une solution particulère x0.

1)c) Soit x une solution quelconque. On a donc:

x-x0 ≡ 0[m] x-x0 ≡ 0[n]

Donc m divise x-x0 et n divise x-x0

Or, m+n=1, donc mn divise x-x0

D’où: x= x0+kmn.

2)a) Posons x0=anv+bmu

On a donc :

x0 ≡ anv[m]
x0 ≡ bmu[n]

<=>

x0+bmu ≡ anv+bmu[m]
x0+anv ≡ anv+bmu[n]

<=>

x ≡ x0[m]
x ≡ x0[n]

2)b)Le système (S) revient à prendre(u,v) ∈ Z tel que:

x=a+mu
x=b+nv

On a donc (u,v) ∈ Z tel que :

x=a+mu
a+mu=b+nv

c’est à dire (u,v) ∈ Z tel que :

x=a+mu
mu-nv=b-a

L’équation mu-nv=b-a n’admet des solutions que si m et n divise b-a

En résolvant l’équation, on trouve u(ou v) et donc x.



Réponse : Congruence de tiruxa, postée le 16-05-2021 à 21:41:51 (S | E)
Bonjour

Au 1°c) on n'en demande pas tant, en fait ce que vous avez fait doit s'utiliser au 2°b)

Au 1°c) on demande seulement de vérifier que x est solution du système donc que x ≡ a[m] et x ≡ b[n]


Pour le 2°a) c'est plus simple :
On sait que x0 ≡ a[m] donc x ≡ a[m] est équivalent à x ≡ x0[m]
de même pour l'autre congruence

Dites moi si vous avez compris




[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Cours gratuits > Forum > Forum maths



Partager : Facebook / Twitter / ... 


> INDISPENSABLES : TESTEZ VOTRE NIVEAU | NOS MEILLEURES FICHES | Fiches les plus populaires | Aide/Contact

> COURS ET TESTS : Arithmétique | Avec cours | Calculs | Calculs littéraux | Conversions | Enfants | Equations | Fonctions | Fractions | Géométrie | Jeux | Nombres | Nombres relatifs | Opérations | Plusieurs thèmes | Problèmes | Statistiques | Tests de niveaux | Vecteurs

> INFORMATIONS : - En savoir plus, Aide, Contactez-nous [Conditions d'utilisation] [Conseils de sécurité] Reproductions et traductions interdites sur tout support (voir conditions) | Contenu des sites déposé chaque semaine chez un huissier de justice. | Mentions légales / Vie privée / Cookies .
| Cours et exercices de mathématiques 100% gratuits, hors abonnement internet auprès d'un fournisseur d'accès.