Retourner à l'exercice
Exercice "Bilan: Equations (niveau seconde)", créé par anonyme (exercice gratuit pour apprendre les mathématiques) :
Résultats des 39 928 personnes qui ont passé ce test :
Moyenne : 18.5% (3.7 / 20) Partager
Dernier membre à avoir fait un sans faute : yoplait / FRANCE, le dimanche 27 avril à 20:04:
"Elementaire...."
93.3% ont eu moins de la moyenne.
6.7% ont eu au moins la moyenne.
Tous les membres qui ont obtenu un 20/20 à ce test
Statistiques questions sur 21773 candidats
Question 1 réussie à 35.3 %
Dans tout le test, quand vous devrez inscrire un ensemble contenant plusieurs valeurs, il faudra écrire ces valeurs dans l'ordre croissant en les séparant par une virgule ou un point-virguleLes nombres décimaux seront donnés sous forme de fraction irréductible et les racines carrées seront notées rac()1) Équations de degré 1: a) L'équation [formule]5(2x+1)-(3x+5)=2x[/formule] a pour unique solution x=*
Question 2 réussie à 13.6 %
b) L'équation [formule]rac{2x+1}{2}-rac{3x+5}{3}=2x[/formule] a pour unique solution x=*
Question 3 réussie à 28.8 %
2) Quel est le degré de l'équation donnée ?a) [formule]rac{2x-4}{5}=2x-4[/formule] est une équation de degré *
Question 4 réussie à 20.7 %
b) [formule]rac{2x-5}{2} -(5x+1)^{2}=x^{3}-25x^{2}[/formule] est une équation de degré *
Question 5 réussie à 10.8 %
c) [formule](2x-1)^{2} -4(x-1)^{2}=6x[/formule] est une équation de degré *
Question 6 réussie à 4.4 %
3) Ensemble de définition a) L'équation [formule]\sqrt{2-x}=\sqrt{x+5}[/formule] a pour ensemble de définition, l'intervalle *
Question 7 réussie à 9.1 %
b) L'équation [formule]rac{x^{2}-1}{x+1}=rac{x-2}{5x} [/formule] a pour ensemble de définition, l'ensemble R-{* }
Question 8 réussie à 5.8 %
4) Équations: résolution algébrique a) L'équation [formule]rac{x-1}{x+1}=x-1[/formule] a pour ensemble de solutions {*}
Question 9 réussie à 3.7 %
b) L'équation [formule]x^{2}-4=(x-2)(3x-1)[/formule] a pour ensemble de solutions {*}
Question 10 réussie à 6.9 %
c) L'équation [formule]rac{4-x}{5-x}=rac{5}{4}[/formule] a pour ensemble de solutions {*}
Question 11 réussie à 3.4 %
d) L'équation [formule]3x(x+\sqrt 2)=0[/formule] a pour ensemble de solutions {*}
Question 12 réussie à 4.1 %
e) L'équation [formule](x-\sqrt 2)^{2}-x(x-\sqrt 2)=0[/formule] a pour ensemble de solutions {*}
Question 13 réussie à 13.1 %
5) Équations: résolution graphiqueSoit f la fonction définie par [formule]f(x)=x^{3}-x^{2}-2x-1[/formule] dont la représentation graphique est donnée ci-dessousa) D'après le graphique, quel est le nombre de solutions de l'équation [formule]x^{3}-x^{2}-2x-1=0 \; ?[/formule]L'équation admet * solution(s)
Question 14 réussie à 8.7 %
On donne le tableau de valeurs suivant :x2.102.112.122.132.142.152.162.172.18f(x)-0.35-0.28-0.21-0.13-0.06+0.020.090.170.25En déduire un encadrement par des décimaux à deux décimales les plus proches possible, de la solution notée x0 de l'équation [formule]x^{3}-x^{2}-2x-1=0[/formule]* < x0
Question 15 réussie à 8.6 %
< *
Question 16 réussie à 9.1 %
b) D'après le graphique, quel est le nombre de solutions de l'équation [formule]x^{3}-x^{2}-2x-1=-2 \;?[/formule]L'équation admet * solution(s)
Question 17 réussie à 8.1 %
On donne le tableau de valeurs suivant :x-1.5-1-0.500.511.522.5f(x)-3.6-1-0.4-1-2.1-3-2.9-13.4Choisir le bon encadrement de la plus petite des solutions, notée x1 de [formule]x^{3}-x^{2}-2x-1=-2[/formule]a) 0 < x1 < 0.5 b) -2.5 < x1 < -1.5 c) -1.5 < x1 < -1 L'encadrement correct est * (choisir a, b ou c)
Retourner à l'exercice : Bilan: Equations (niveau seconde)
Autres exercices pour apprendre les mathématiques